Ecodesign preparatory study Light Sources, Lot 8/9/19

Final presentation for the Ecodesign Consultation Forum Brussels, 7 December 2015

Presented by René Kemna, Leo Wierda (VHK)

Assignment

Preparatory study on Light Sources:

- Prepare further and/or more advanced ecodesign and/or labelling requirements.
- Build upon and advance existing Regulations.
- Aim at setting more ambitious targets for all lighting products currently regulated.
- Identify other lighting products to be included in the study.
- Explore feasibility to **unify all four existing regulations into one** (or only the three ecodesign regulations)
- Harmonise projections for past and future lighting energy use (also considering parallel Lot 37 study on Lighting Systems)

Existing

Ecodesign Directive 2009/125/EC

Method/conditions for ecodesign Eligibility criteria Least Life Cycle Cost (LLCC) target No negative impacts (art. 15)

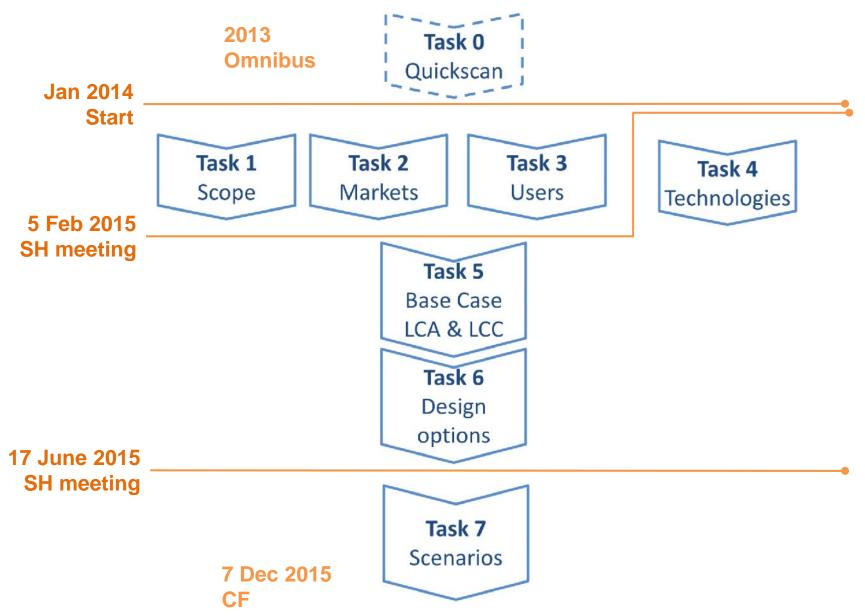
> Implementations for lighting

CR (EC) No. 244/2009 amend. CR (EU) No. 2015/1428

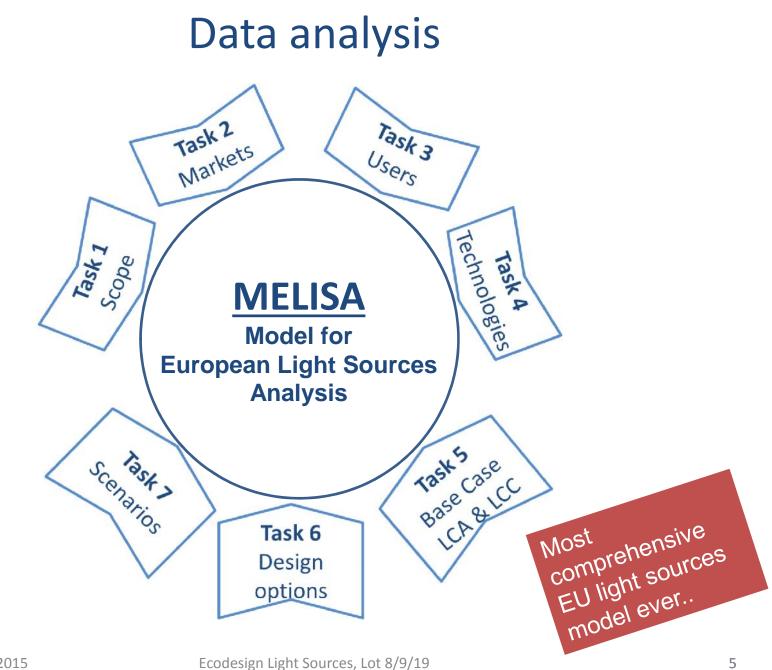
CR (EC) No. 245/2009 amend. CR (EC) No. 347/2010

CR (EU) No. 1194/2012

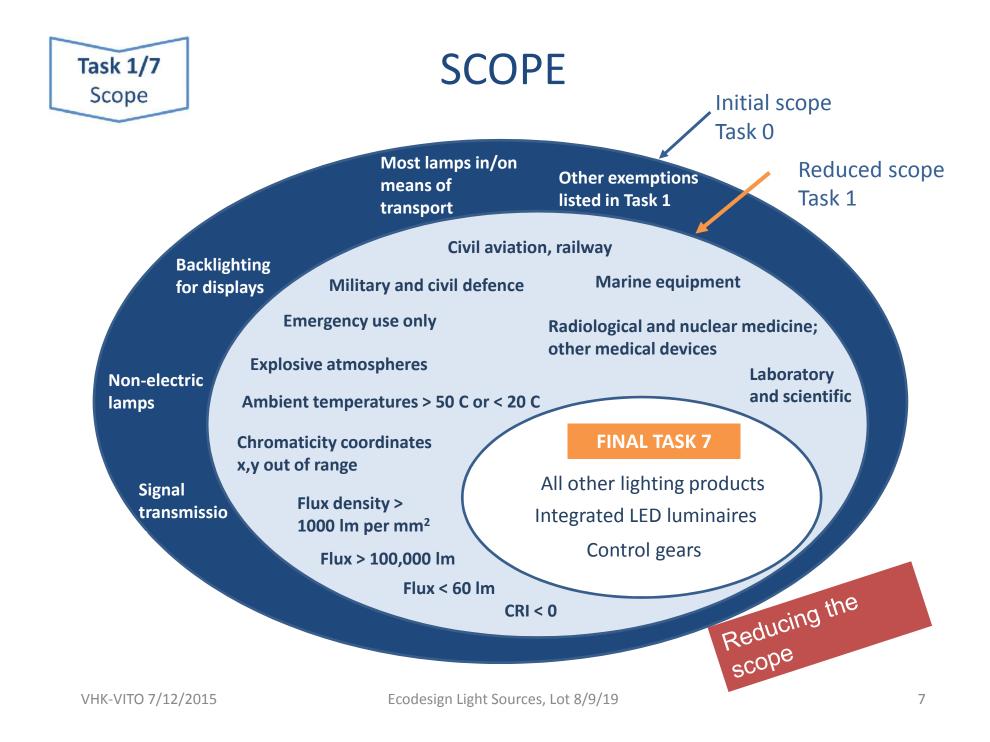
Labelling Directive 2010/30/EU Method/conditions/responsibilities for (energy) labelling and other product information (similar criteria) (revision ongoing)


> Implementations for lighting

CDR (EU) 874/2012 Amend. CDR (EU) No. 518/2014


CR = Commission Regulation CDR= Commission Delegated Regulation

Project Structure & Stakeholder involvement



4

MELISA parameters

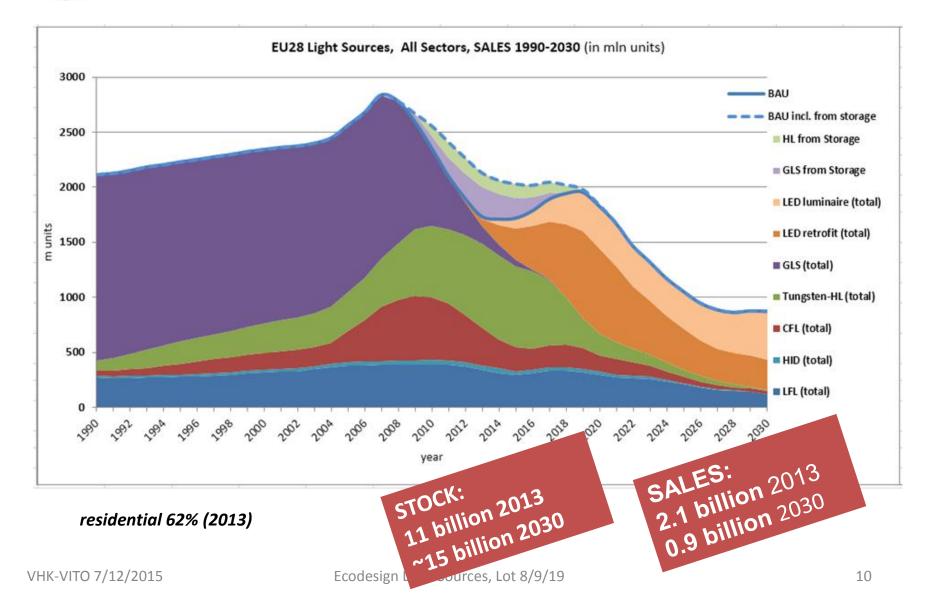
Model Input data (per BC)	Intermediate results	Output data (EU-28 total)
Sales in EU-28 per year	Stock in EU-28 per year	
Avg. useful lifetime (hours)	Avg. useful lifetime (years)	
Avg. annual operating hours (h/a)		EU-28 total installed capacity (Tlm)
Avg. unit capacity (Im)	Avg. unit power (W)	EU-28 total installed power (GW)
Avg. sales efficiency (Im/W)	Avg. stock efficiency (Im/W)	Liectric Energy (TWh/a)
Avg. unit price (euros)		
Taxes (VAT 20% residential)	Purchase costs (billion euros)	
Avg. unit install cost (euros)		Acquisition costs (billion euros)
Electricity rates (euros/kWh)	Electricity costs (billion euros)	
Escalation rate (4% /a)		Running costs (billion euros)
Avg. unit maintenance (euros/a)		Total consumer expense (bn euros)

Standards

- Potential issues for **mandates** to ESO's:
 - LED lumen maintenance & life (accelerated testing)
 - dimmer compatibility (work ongoing, expected 2018)
 - colour rendering metrics across lamp types (new CRI)
 - goniophotometric testing of directional lamps or not (costs)
- Reliable and practical **tests** for **special purpose lamps and other exemptions**.
- •
- Tests and calculation methods **flickering/ stroboscopic** effect

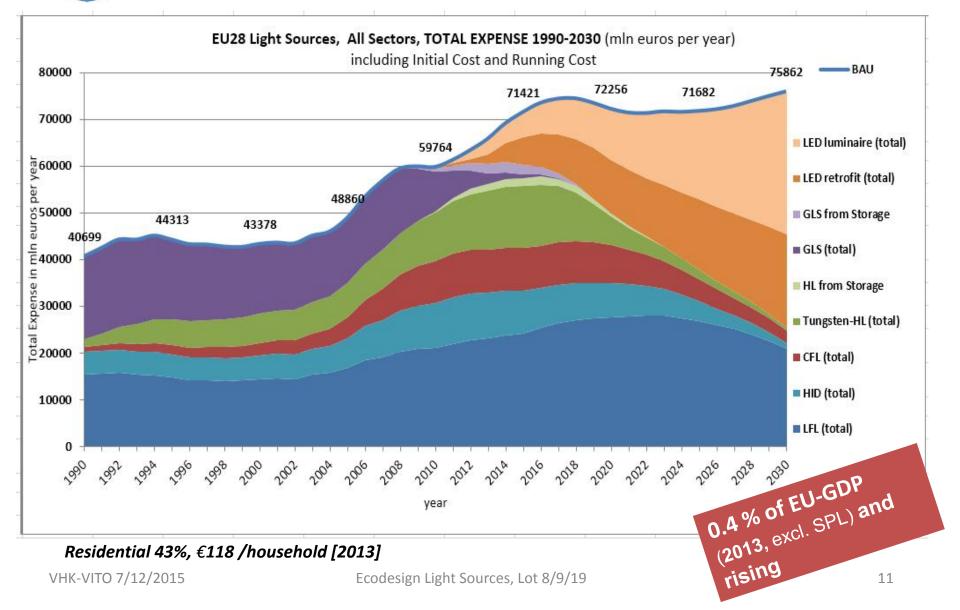
Legislation

TASK 1 (ca. Jan. 2015):

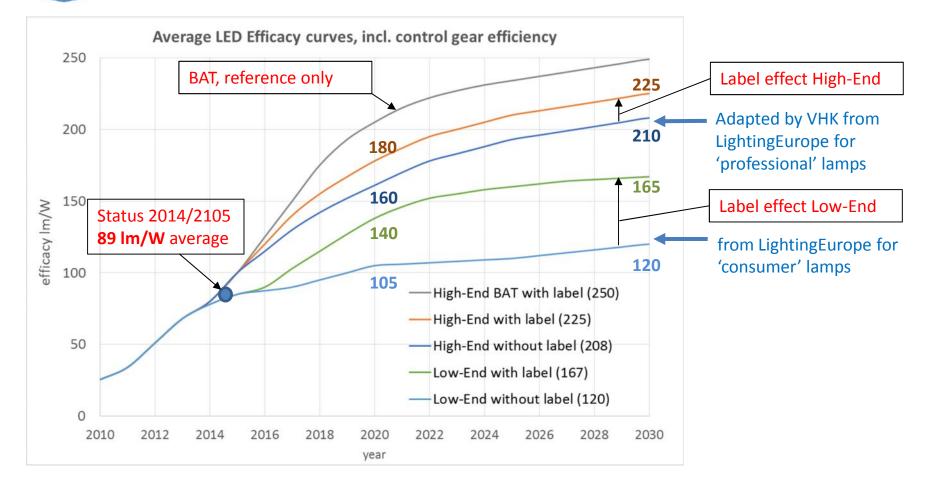

- EU-legislation has the broadest scope
- Overall EU-legislation has **most stringent** requirements
- EU Energy labelling covers most lamp types
- EU labelling/information requirements are very comprehensive compared to some other countries.

UPDATE: 26 Nov. 2015

- Japan is going to ban all bulbs and fluorescents by 2020, only LED;
- EU no longer leading and danger of dumping if the current situation persists.



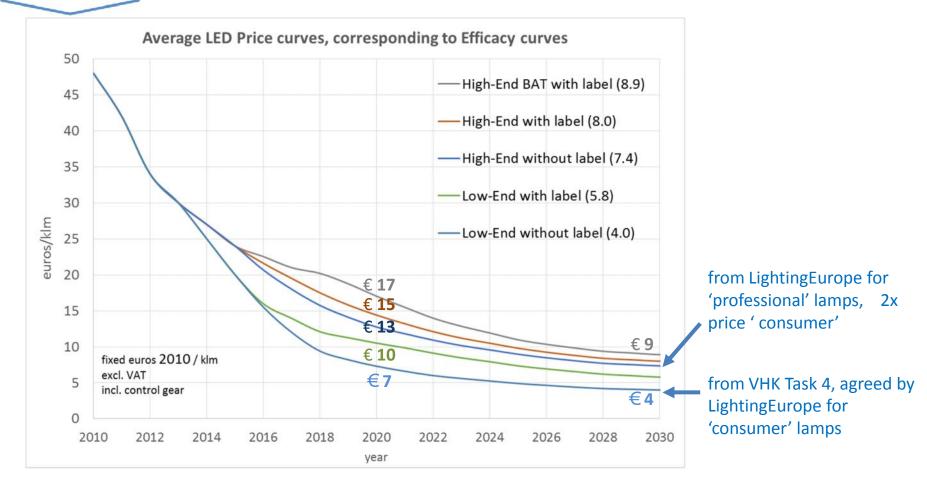
Sales [BAU]



Consumer expenditure [BAU]

Task 4/7 Technologies

Efficacy projection LED



High-End = LED replacing LFL, CFLni, HID-lamps in non-residential sector. Low-End = LED replacing GLS, HL, CFLi in all sectors and LFL, CFLni in residential.

VHK-VITO 7/12/2015

Ecodesign Light Sources, Lot 8/9/19

Price projection LED

Price curves apply to efficacy curves with same name, i.e. price increases linearly with efficacy

Task 4/7

Technologies

Life-cycle costs

- Life Cycle Cost per Mlmh (EU-28, 2013) 30 25 22.8 22.2 21.8 20.2 20 17.6 17.0 Euro/Mlmh 16.0 10 6.2 5.6 5 2.6 2.1 1.7 2.7 2.9 0 HIMNC HIMNY LEL TIZ CFLIN HUNR HUNC HUMNL HIMNE JEL + GISP GIST HRN HIT HIT HIT EN P lamp type
- Functional unit of million lumen output per hour (Mlmh)
- calculated for lamps sold in 2013
- escalation rate electricity 4%

- 2013: GLS and HL 16 23 euros/Mlmh
 CFLs 5.6 6.2 euros/Mlmh.
 LEDs 3.4 euros/Mlmh (2.8 in 2015, 1.3 in 2020)
 LFL, HID 1.6 3 euros/Mlmh, but HID low CRI, not indoor
- Total consumer expenditure for lighting in 2013 was 54.8 billion euros, of which 67% are electricity costs. LFLs account for 38% of the total expenditure.

LLCC & Payback LED

Results valid only for analysed conditions (reference power/lumen, operating hours per year), under the assumptions made, and for the prices and costs considered. NOT valid for every lighting situation, but indicative for the average EU-28 situation.

Base case (BC)	Available option	Available	Payback for LED	Payback for LED	
(analysis conditions)	with lowest	option with	2015 vs. best	2020 vs. best classic	
	LCC/Mlmh	lowest	classic	technology	
		kWh/Mlmh	(years)	(years)	
LFL T8 tri-phosphor (2400 lm, 2017 h/a)	Long life LFL T8t	LED 2015	maybe never	4	
LFL T5 (2275 lm, 2099 h/a)	High-efficacy T5	LED 2015	maybe never	4	
LFL T8 halo-phosphor (2400 lm, 1398 h/a)	T8 tri-phosphor	LED 2015	maybe never	3	
LFL T12 (2450 lm, 1623 h/a)	T8 tri-phosphor	LED 2015	maybe never	2.5	
CFLni (633 lm, 1197 h/a)	LED 2015	LED 2015	no pay back in CFLni life	3.5	
HPM (12000 lm,4000 h/a)	HPS BAT	HPS BAT	5	1	
HPS & MH (13200 lm, 4000 h/a)	HPS BAT, MH BAT	HPS BAT	maybe never	2.5	
MV NDLS (GLS-X, HL-E, CFLi) (500 lm, 450h)	LED 2015	LED 2015	3.5-4 (GLS, HL) >12 (CFLi)	1	
MV DLS (GLS-R, HL-X) (450 lm, 450 h/a)	LED 2015	LED 2015	2	0	
HL-LV-R (MR16) (490 lm, 450 h/a)	LED 2015	LED 2015	4.5	< 1	
HL-LV-Capsules (490 lm, 450 h/a)	LED 2015	LED 2015	3	2	
HL-MV-Capsules (420 lm, 450 h/a)	LED 2015	LED 2015	1	< 1	
HL-MV-Linear (R7s) (3000 lm, 450 h/a)	LED 2015	LED 2015	1	<1	

Policy options and scenarios

Opportunities/Barriers

Main opportunities/barriers found in the study:

- Strong, unforeseen technological progress in LED-lighting and decreasing prices
- Availability of **new testing equipment and test standards**
- Improve market surveillance, speeding up test procedures, removing ambiguities, ...
- Improve effectiveness of energy labelling (size, visibility) (awaiting revision of Framework Directive)
- barrier to ambitious timing: compatibility between dimmers and new LED light sources; new standards foreseen in 2018.

Options Considered

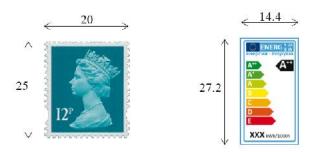
- No new measures → BAU (baseline)
- Self-regulation (Voluntary Agreement) \rightarrow no initiative
- Energy-labelling only \rightarrow no advantage in excluding ecodesign
- **Ecodesign only** \rightarrow no advantage in excluding label
- Ecodesign and Energy-labelling → OK → study sub-options for different ecodesign ambition levels and a much improved label

Label Opportunities & Barriers

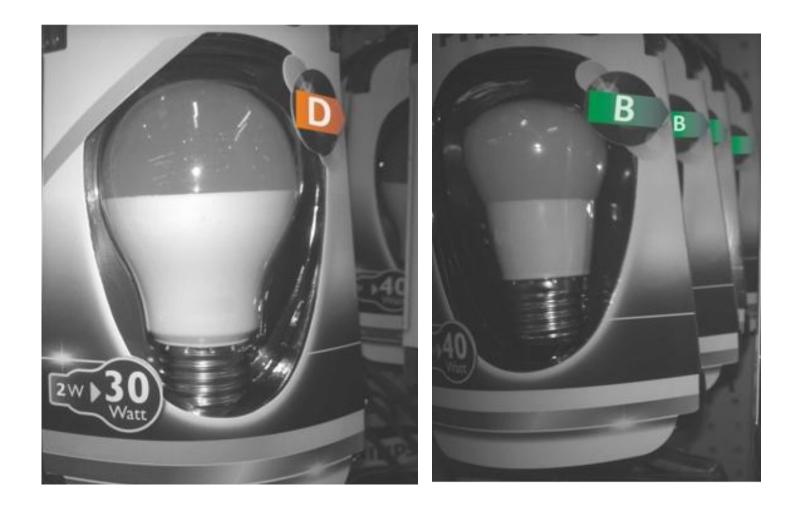
- Now: LED or classic ?
- Future : <u>which</u> LED? → more ambitious scale

85 - 210 lm/W

→ rescaling required (in context of revised Framework)

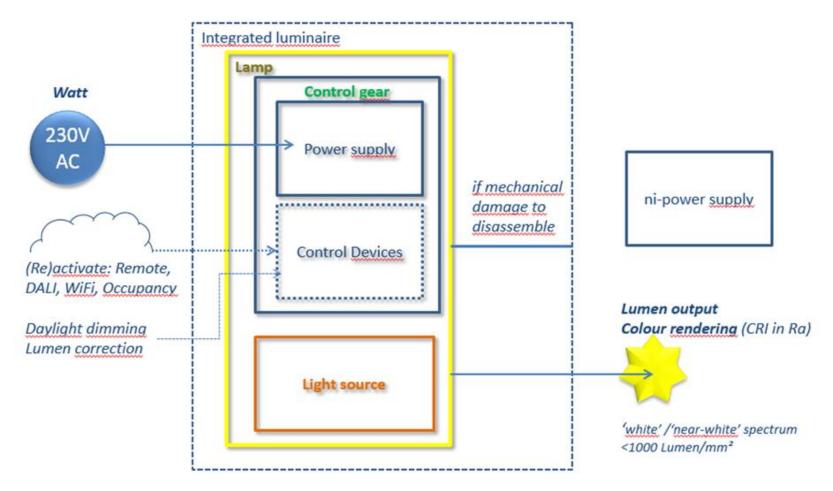

- Current label :
 - can be **small**
 - can be black and white

Minimum allowed label size today


- usually not visible in display (back of blister)

Im_{tot} / W_{mains} Class min max Α 210 В 185 210 С 160 185 D 135 160 Ε 110 135 F 85 110 G 85

Proposal in Task report

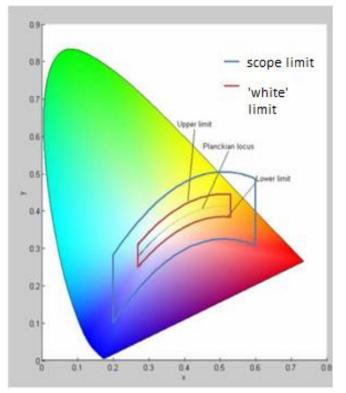

Ecodesign only

Main characteristics:

- **Single** Ecodesign light-source **regulation**
- Technology neutral
- Lighting product efficacy = lumen output/mains W input (always with control gear losses, also for LFL/HID)
- Scope: 'white' light + health, safety exemptions. Functional exemptions based on measured parameters (lumen, spectrum x-y, emitter-size, CRI)
- **Time** for stakeholders to anticipate introduction (2020):
- **Maximum power** requirement based on **Im/W** + parasitic, CRI-correct
- Testing: instantaneous (CRI, lumen, CCT, x-y) within hours, endurance (lumen maintenance, switches) with accelerated tests (max. 1000h, 8wk); no testing (heat-up, ignition time)

Products in Scope

Lighting product = Light Source + Ballast/Control gear + Integrated Control devices



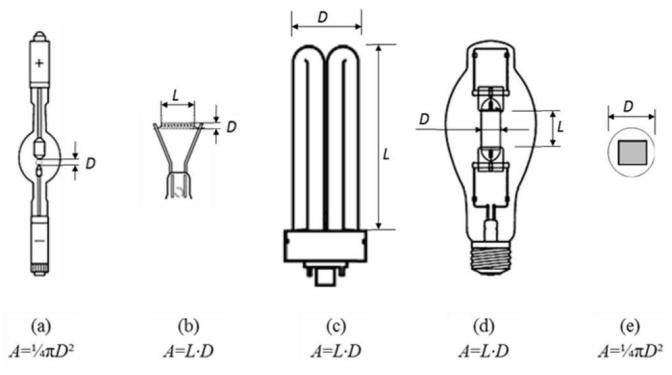
Spectrum

Chromaticity coordinates x,y in scope:

0,200 < x < 0,600 and

 $-2,3172 x^{2} + 2,3653 x - 0,2800 < y < -2,3172 x^{2} + 2,3653 x - 0,1000;$

- Intentionally wider than 'white light'
- Easy to measure criterion
 - Gives manufacturers the possibility to exclude IR (red, gold), UV (blue), grow lights (purple), collagen (pink), etc.


Chromaticity coordinates x,y to qualify as 'white light':

0,270 < x < 0,530 and $-2,3172 x^{2} + 2,3653 x - 0,2199 < y < -2,3172 x^{2} + 2,3653 x - 0,1595;$

Emitter size

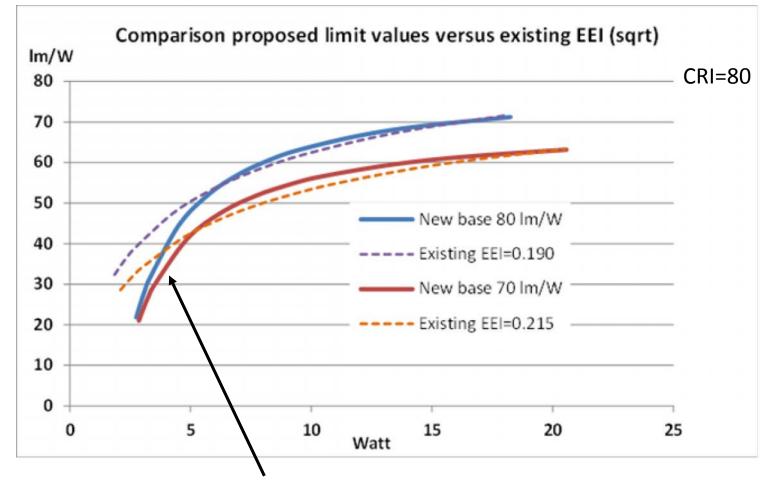
<u>Emitter size criterion</u>: in scope if flux density < 1000 lm per mm²

 mainly intends to exempt light projection and light guidance sources (have lm/mm² as yet unattainable by LED-lamps).

Examples of projected light-emitting surface areas

Formula

Maximum power requirement formula:


Power (on) ≤ (Constant + Flux/Target Efficacy)* CRI correction

- Power [W mains]
 - 2 W [Account for parasitic power of control- and network devices, fixed electrode losses in discharge lamps, lower efficacy for lower lumen lamps, makes result similar to square-root formula for EEI]
 - Flux [lumen] is total measured luminous flux (not in cone)
 - <u>Target Efficacy [lumen]</u> pertaining to Power mains Watt for Lighting Product, including gear [gear 90% minimum and default], e.g. from 70 - 80 - 120 lm/W

(CRI+240)/320 [Bonus high CRI lamps; penalty low CRI lamps; CRI=80 \rightarrow 1.0; CRI=90 \rightarrow 1.03; CRI=60 \rightarrow 0.94; CRI=25 \rightarrow 0.83]

Curves

Comparison with square-root formula of existing regulations:

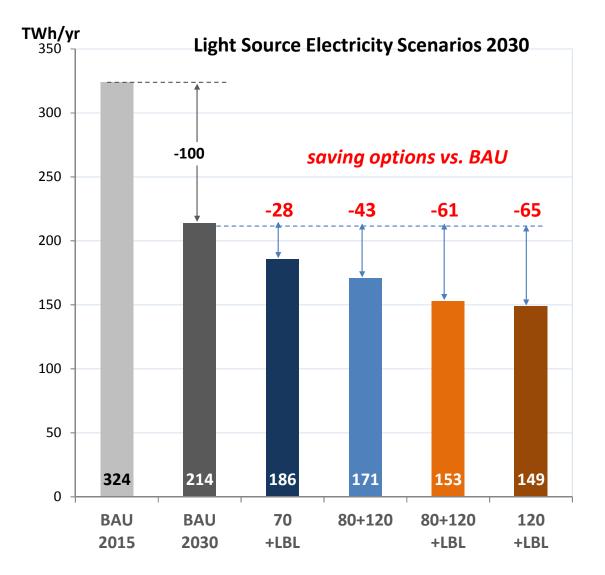
For low power, new requirements are less severe than existing

Non-efficacy requirements (all options)

Other requirements proposed in study:

- Pstandby ≤ 1 W if one/more control devices integrated
- Pstandby ≤ 0,5 W no control devices; only reactivation function
- Special requirement when claiming to emit 'white light'. Suitable for general purpose lighting: 'White light', CRI >80 colour rendering and a colour temperature (CCT) between limits
- lumen maintenance (after accelerated tests), failure rate switches (after acc. test)
- If marked 'dimmable': compatible with new standard from 2018.
- No requirement on Warm-up and ignition-time (CFLs phased out)
- Power factor: > 0.5 if output<500 lm, > 0.9 for output 0.5-10 klm, no requirement for output >10 klm.
- Colour consistency: within a six-step MacAdam ellipse.

VHK-VITO 7/12/2015


Scenarios

- **BAU** scenario (incl. future effect current regulations & LED trends) (reference scenario; incl. savings with respect to 2015 situation)
- **ECO70+LBL** scenario $P(on) \le (2 + \emptyset/70)^*((CRI+240)/320)$ in 2020
- **ECO80+120** scenario
- **ECO80+120+LBL** scenario $P(on) \le (2 + \emptyset/80)^*((CRI+240)/320)$ in 2020 (stage 1) $P(on) \le (2 + \emptyset/120)^*((CRI+240)/320)$ in 2024 (stage 2)
- ECO120+LBL scenario
 P(on) ≤ (2 + Ø/120)*((CRI+240)/320) in 2020
 (approximate reference for highest savings that could be theoretically obtained, technical feasibility uncertain)

Comparison results 2030

impact	unit	absolute		relative vs. BAU 2030				
		BAU	BAU	ECO70+	ECO80+	ECO80+	ECO120	
		2015	2030	LBL	120	120+LBL	+LBL	
Electricity	TWh/yr	324	214	-28	-43	-61	-65	
GHG emissions	Mt CO ₂ eq.	128	73	-10	-14	-21	-22	
Acquisition costs	bn. euros	18.2	14.4	+0.8	-0.3	+1.1	+1.1	
Energy costs	bn. euros	53.2	61.5	-7.4	-9.9	-14.9	-15.9	
Total expenditure	bn. euros	71.4	75.9	-6.6	-10.2	-13.8	-14.7	
Business revenu	bn. euros	10	8.6	+0.9	+0.2	+1.3	+1.3	
Jobs (in+out EU)	000 jobs	199	172	+18	+4	+26	+26	

Comparison: Electricity savings 2030

VHK-VITO 7/12/2015